

Abstract— This paper descr ibes the software
architecture of Dragon, a real-time situational
awareness vir tual environment for battlefield
visualization. Dragon receives data from a number
of different sources and creates a single, coherent,
and consistent three-dimensional display. We
descr ibe the problem of Battlefield Visualization
and the challenges it imposes. We discuss the
Dragon architecture, the rational for its design, and
its performance in an actual application. The
battlefield VR system is also suitable for similar
civilian domains such as large-scale disaster relief
and hostage rescue.

Index terms—distr ibuted VR; command and
control; software architecture; interactive
visualization.

I. INTRODUCTION

Gaining a detailed understanding of the modern battle
space is vital to the success of any military operation,
both in terms of achieving objectives and minimizing
civilian and military casualties. This understanding,
also known as situation awareness, is used by Combat
Operations Centers (COCs) in the complex task of
directing the movement of assets and material over
rugged terrain, day and night, in uncertain weather
conditions, while taking account of possible enemy
locations and activities. Most COCs receive vast
amounts of data from many different systems and
sources such as eyewitness reports, aerial and satellite
photography, and a multitude of sensors such as sonar,
radar, seismic, and infrared. Despite the availability of
state-of-the-art sensors and data fusion technology,

i NRL Virtual Reality Laboratory; contractor for ITT Systems & Sciences.
Email: julier@ait.nrl.navy.mil
ii NRL Virtual Reality Laboratory; contractor for Wagner Associates. Email:
king@ait.nrl.navy.mil
iii NRL Virtual Reality Laboratory; contractor for ITT Systems & Sciences.
Email: bcolbert@ait.nrl.navy.mil.
iv Effectiveness of Navy Electronic Warfare Systems, NRL. Email:
durbin@nrl.navy.mil
v NRL Virtual Reality Laboratory; Email:
rosenblu@ait.nrl.navy.mil

many command and control decisions typically use 2D
displays and, for advanced planning, these are
sometimes just paper maps with acetate overlays.
Creating detailed maps and overlays is labor intensive
and can take several hours to print and distribute.
Given the rapid growth in available information and
the increased tempo of warfare [Cebrowski-98], these
methods no longer meet the needs of the Navy and
Marine Corps.

The Virtual Reality Laboratory at the Naval Research
Laboratory was one of the pioneers of the Responsive
Workbench, having fabricated the first U.S. version in
1994 [Rosenblum et al., 1995] with applications in
medicine and engineering design [Rosenblum et al.,
1996]. More recently our thrust has been in developing
Dragon for situational awareness on the Workbench
and interoperably across platforms with differing
display and interaction capabilities. Dragon is a
prototype software platform for developing and
investigating methods for visualizing and interacting
with battlefield information in COCs.

Battlefield visualization is a special case of a planning
task where a user must plan and coordinate multiple
units within a complex and ever changing environment.
It has a number of specialized needs (described in
Section II) which impact both the software architecture
and user interface design. We were unable to find a
single system that could meet our requirements and it
was necessary to develop a custom solution. This
paper describes the development of this architecture
and how it was tailored to meet our requirements. A
companion paper describes the development and
verification of the user interface through formative and
summative user evaluations [Hix-99].

The structure of this paper is as follows. In Section II
we describe the problem of battlefield visualization and
outline the history of the Dragon system. The software
architecture is described in Section III. The application
of the Dragon system to a mine-clearing operational
simulation is described in Section IV. The summary
and conclusions are presented in Section V.

Simon Julieri, Rob Kingii, Brad Colbertiii, Jim Durbiniv and Lawrence Rosenblumv

The Software Architecture of a Real-Time
Battlefield Visualization Virtual Environment

II. PROBLEM STATEMENT

The NRL’s Virtual Reality Laboratory was
approached in 1996 by the Marine Corps Warfighting
Laboratory to develop a prototype visualization system
for the Hunter Warrior Advanced Warfighting
Experiment (AWE). Hunter Warrior was the first in a
series of experiments to explore technology and its role
in supporting the Marines in the 21st century
[Rosenblum et al., 1997].

The requirements for a battlespace visualization system
include:

1. Interface to all of the appropriate military situation
awareness, planning, and simulation systems.
Each data source has its own characteristics,
such as the types of data it provides, the queries
that can be made, the protocols involved, and the
update rates. The limitations and benefits of each
type of data source must be preserved.

2. Display urban terrain, manmade objects, and
objects and terrain under foliage.

3. Present a comprehensive and timely view of the
environment. This includes displaying extremely
large, high-resolution maps of the terrain and
extremely large numbers of moving entities (on
the order of hundreds or thousands).

4. Provide a dynamic range of resolution sufficient
to track units ranging from aircraft carriers to
individuals.

5. Visualize potential enemy and friendly courses of
actions and neutral activity.

6. Support information filtering. It must be possible
to display a selected subset of available
information using appropriate display techniques.

7. Prioritize events and issue alarms.

8. Deliver information on demand. It should be
possible to obtain any known information about a
particular entity such as its fuel level or alert
status.

9. Represent battlefield uncertainty. For example,
certain data fusion procedures might be unable to
unambiguously classify the identity of an entity.

10. Support multi-user collaboration.

11. Support multiple computer hardware
configurations, ranging from low-end PCs to high-
end Silicon Graphics (SGI) workstations.

12. Support multiple types of display devices, ranging
from desktop displays to CAVE™-like devices.

These requirements are summarized in Figure 1, which
shows a top-level architectural diagram of the Dragon
system. There are three main issues: interaction
devices, display platforms, and information sources.
Information is received from many different types and

kinds of disparate data sources including battlespace
monitoring systems and this information must be fused
into a single, consistent view of the environment. The
user can view these data on one of a number of
platforms and interact with it via many different types
of input devices.

Figure 1: Role of the Architecture

At first sight, it appears that this architecture is very
conventional and the visualization problems can be
addressed by systems that have already been described
in the literature. DIVE [Hagsand-96], for example, is a
mature, multi-platform, multi-user collaborative VR
system which can be extended by interpreted scripts
(tcl/tk) or used as a library which could be linked to a
custom application. Similarly, the Virtual Life
Network [Padzic-97] has a set of “engines” which
control aspects of the virtual environment such as
object behavior or navigation. Each engine can be
driven by an external interface through network
connections. In theory, these engines could be driven
directly from the interaction managers and external
interfaces.

However, most existing VR systems and collaborative
virtual environments [Churchill-98] are designed to
support architectural features such as rooms, objects,
and avatars as opposed to terrain, military vehicles,
and planning symbology which are required to
visualize the modern battlefield environment. For this
reason, we developed our own architecture and
software system.

To gain an appreciation of the application domain,
Figure 2 shows the output from the Dragon system for
the Hunter Warrior AWE [Durbin-98]. The
environment consists of a terrain that is populated by a
set of entities. The terrain must be an accurate
representation of the physical conditions of the
appropriate scenario. The geometry for the terrain is

extracted from high-resolution digital terrain elevation
data (DTED) and it is textured with an accurate, high-
resolution map. Each entity represents a report from an
external data system and can represent discrete military
units or various types of planning symbology such as
named areas of interest.

Figure 2: Output from the Dragon System

III. ARCHITECTURE DESCRIPTION

The Dragon system, like many other complex modern
software systems, is designed as a set of tightly
coupled software modules. The current design, which
is illustrated in Figure 3, consists of two major
subsystems: the Generic Entity Manager (GEM) and
the Rendering Engine (RE). GEM is responsible for
collecting data from external data sources and
expressing them in a common, standard representation.
The RE is responsible for all user interaction; it draws
the virtual environment, processes user input, and
creates a set of requests and events that are directed
back to GEM. The two subsystems interact by means
of a pair of unidirectional event queues (that specifies
the types of state changes that have occurred) and a
shared entity database (that specifies the actual entity
state information).

This design has a number of advantages. First, the
clear separation of the entity manager from the
renderer allows the two subsystems to operate
asynchronously. The GEM is largely driven by the rate
at which the external interfaces provide data. As will
be described below, some of these systems provide
many events per second whereas others provide data
infrequently. The RE operates independently of these
data rates, attempting to maintain constant and
interactive frame rates (>10Hz stereo).

Second, the clear separation of the GEM and RE
modules isolates possible interdependencies. All
interactions between the two subsystems are
accomplished via a clearly defined API and a strictly
defined shared entity database. This means that
different versions of the RE can be used with a given
version of the GEM. For example, our current
Rendering Engine (as discussed in Section III.C) is
based on the IRIS Performer software libraries.
However, any rendering system that conforms to the
GEM-RE communications system (described in
Section III.B) could be used.

Finally, this architecture encourages code reuse.
Components of the RE have been transitioned to a
parallel scientific visualization project [Kuo-99].

GEM

RENDERING

ENGINE

DIS

NBIS

Other GEMs

6 DOF Tracker

Mouse

Keyboard

EVENT QUEUE

EVENT QUEUE

SHARED
ENTITY

DATABASE

Figure 3: The Software Architecture

The following subsections describe the GEM, the RE,
and the inter-module communication system.

A. Generic Entity Manager (GEM).

The GEM has two main components: an entity
database, which stores information on all current
entities in the environment, and a set of external
systems interfaces. Each entity is created and
controlled by an appropriate external systems interface.
All entities are sub-classed from the same basic entity
definition. To date we have implemented four
interfaces: a persistent data store (or static data
system), a Distributed Interactive Simulation (DIS)
interface, a Joint Maritime Command Information
System (NBIS) interface, and a remote GEM interface
for multi-user collaboration.

1) Entity Definition
Each identifiable component of the environment,
whether it is a solid object, such as a tank, or an
abstract logical relationship, such as a named area of
interest, is described as a type of entity. The entity
definition must be sufficiently broad to describe all of

the types of entities that the Dragon system will
present. For a general environment this is a formidable
task. Fortunately, the Department of Defense has
addressed this need in the development of databases
and communications systems.

Probably one of the best-known and most applicable
classifications is that provided by DIS. DIS
exhaustively enumerates most types and kinds of
military assets encountered in a battlefield1. Recently,
DIS has been superseded by the High-Level
Architecture (HLA). HLA exploits recent
developments in object oriented programming to
provide a general, scalable and flexible framework for
software development [DMSO-97].

At the time that we began the development of Dragon,
a mature implementation of HLA was not available.
Therefore, our entity description is a simplification of
the HLA Federated Object Model incorporating the
classification scheme from DIS. Specifically, the fields
used in Dragon for each entity are listed in Table 1
below.

Identification
 Source

ID
Type

Graphical representation
 Model name and scale
 Appearance
 Label
Location
Attribute List
Ownership and Permissions

Table 1: Components of an entity

The meaning of each field is as follows:

• Identification. The Dragon system requires that
each entity have a unique identity. An entity’s
identification consists of its source, its ID and its
type. The source specifies the external data system
providing the entity. The ID is the identification
tag provided by the source system. Since different
systems use different naming and labeling
practices, GEM does not impose any kind of
structure on this field. The type is the DIS
enumeration describing the entity. It consists of six
fields (kind, domain, nationality, category,
subcategory and specific.) which together
completely define the nationality, role and type of
each entity. For example, kind=1, domain=1,

1 IEEE standard 1278.1- 1995.

nationality=225, category=1, subcategory=9,
specific=1 is a prototype US AAI Rapid
Deployment Force Light Tank Combined Arms
Team/Lightweight Combat Vehicle.

• Graphical Representation. The graphical
representation determines how a particular entity
will be displayed to the user. The first field
specifies the model name (typically its file name)
and the scaling to be applied to the model after it
has been loaded. Typically, the entity type
determines its representation. A look up-table,
defined by a configuration file, maps each entity
type to a particular model name and scale. An
entity model can contain a number of
representations each reflecting a different entity
state. For example, different models are used to
represent an entity that is healthy, damaged, or
destroyed. The appearance field determines the
state to be shown. The label is an optional text
label that can be attached to an entity.
Supplemental information contains miscellaneous
data, such as comments placed by a battlefield
observer.

• Location. This specifies the position and
orientation of the entity. Surprisingly enough, this
is one of the most complicated parts of the entity
definition. There are two reasons for this difficulty.
First, although the Earth is extremely large it is not
flat. On the scale of many battlefields – typically
tens of kilometers on a side, the slight curvature of
the Earth is just sufficient to introduce subtle but
appreciable errors. The second problem is that
there are literally dozens of different coordinate
systems that can be used to describe the location of
an entity. The coordinate systems we have
implemented include geodetic (longitude and
latitude to six or seven decimal places), Cartesian
(earth-centered earth-fixed inertial) and the
Universal Transverse Mercator. These different
coordinate systems are converted to a Cartesian
coordinate system. Even so, offsets must be
applied to avoid truncation and rounding errors2.

• Attribute List. Each entity can have a list of
attributes attached to it. Each attribute is a data
type, such as an integer or a string, that
encapsulates an operational attribute of the entity.

2 Performer only accepts single-precision floating point
numbers for position. Both the Java 3D API and the latest
release of the Performer libraries now provide mechanisms
to accurately specify very large distances.

For example, the attribute might contain the fuel
level of an aircraft.

• Ownership and Permissions. GEM provides a
mechanism of supporting the policies of its
external systems through the notion of ownership
and permissions. This mechanism is drawn from
the models used in DIVE [Hagsand-96], SPLINE
[Waters-97], the MR Toolkit [Wang-95], and
HLA [DMSO-97]. Each entity is owned by the
external system that created it. Associated with
each entity are a set of actions (such as delete,
query or move) that are moderated by a set of
access control lists and permissions. For example,
a simulation system might not let a user, under
normal circumstances, pick up and move an entity.
However, during a set up phase when a scenario is
created, the simulation system might grant the user
entity movement capabilities.

The next subsections describe some of the external
data systems and how the data is converted to the
general entity format.

2) Static
The static data store is the simplest and one of the most
useful data interfaces. Its name refers to the fact that it
is a link to a static or persistent database. It offers the
capability of storing a “snap shot” of the scenario at a
particular moment in time that can then be loaded at a
later date. The entities created by this system are not
controlled or regulated by an external system, and can
be used in the collaborative interface described later.

3) DIS
The DIS interface was developed to allow GEM to
participate in Modular Semi-Automated Forces
(ModSAF) simulation exercises as a “stealth viewer” –
a device that can be used to explore and examine a
virtual environment but cannot make any changes.

ModSAF is a multi-host virtual environment system
for planning and shaping military activities
[Courtmanche-95]. Using the DIS protocol mechanism,
ModSAF contains models of the capabilities and
behaviors of many different kinds and types of military
assets. The Navy, the Army, and the Airforce use it
extensively in their simulation systems.

To successfully interface with this system, GEM’s
external interface had to act, as far as the simulation
was concerned, as if it were another participant within
the simulation. This was achieved by incorporating the
vrLink libraries from MÄK Technologies. vrLink is an
interface library that interprets each simulation data

packet, builds a table of entities that currently exist in
the simulation, and provides other simulation specific
operations such as dead reckoning.

Since the connection was passive, the DIS system
owned and controlled all of the entities. Users were
able to select and query these objects, but they could
not move them or change their state.

Due to its occasionally high data rates, DIS placed a
number of demands on the design of Dragon. For
example, whenever the interface to a running
simulation is first opened, Dragon must create, within
a matter of seconds, all of the entities populating the
virtual environment. To maintain interactive rates
despite this large number of events, asynchronous
model loading schemes had to be developed. This is
described in more detail in Section III.C.

4) Network Battlefield Information System (NBIS)
The Joint Maritime Command Information System
(NBIS) is a widely used automated information system
designed to support mission planning. It is composed
of several mission applications integrated into a
common XWindows-like operating environment and
networked to support the sharing of raw sensor data,
tracked information, and other types of databases. For
Dragon we were interested in monitoring and
displaying track information. Each track corresponds
to a confirmed entity or object in the environment.
Although NBIS uses its own methods for labeling and
classifying tracks, we were able to make a one-to-one
mapping from the NBIS to the DIS classification
schemes by via a look-up table in a configuration file.

Unlike ModSAF, which is computer generated and is a
constant stream of data packets, NBIS data arises from
sensor and tracking systems as well as eyewitness
reports. The data arrives infrequently and
unpredictably (on the order of seconds to minutes
between each data packet) and can contain ambiguities.
For example, in the Hunter Warrior AWE, a great deal
of NBIS data was provided by the Leatherneck system
– a set of Marine observers equipped with an Apple
Newton, a GPS receiver, and an Erickson radio who
keyed their observations directly into the system. These
observations were automatically routed and entered
into NBIS. Messages could be incorrectly formatted or
ambiguous. For example, a number of different
observers viewing the same object could classify it as a
different type of military entity or report a grossly
different location.

In the Hunter Warrior AWE, the classification errors
were predominantly and consistently of the

misidentification and incorrect localization variety.
We compensated for the misidentification by adjusting
the NBIS to DIS mapping.

In general a visualization system like Dragon should
not automatically correct for ambiguous or erroneous
data as this might introduce false or misleading
information. Rather, the system should inform the user
that the potential for incorrect data is present and let
the user decide the appropriate course of action.

5) GEM to GEM
Planning is an inherently collaborative activity and we
developed a GEM to GEM interface to permit simple
multi-user collaboration. The collaborative system was
implemented using CAVERN as the transport layer
[Leigh-97]. The collaboration system allows an
arbitrary number of GEMs to be inter-connected.

Working on the assumption that collaborating GEMs
will be connected to the same set of external systems,
the collaborative interface is responsible for
propagating a subset of entities that can be shared.

Furthermore, we have only implemented a subset of the
full permissions-ownership capabilities. Currently, an
entity can be owned by only one user who has
permission to carry out all operations (This is not
unlike the systems used in DIVE [Hagsand-96] and
SPLINE [Waters-97]).

Initially, all shareable entities are not owned. To own
an entity, a user selects it. When the entity becomes
selected, this information is propagated to all other
collaborating users who see the graphical
representation of the entity (such as the color of a
naming label) change to indicate that the entity is now
owned by a particular user. The owner is now able to
move or delete the entity. The entity’s movements are
reflected on the remote machines. Finally, the user
deselects the object, thereby releasing ownership rights
to it.

When GEM A wishes to collaborate with GEM B, A
first requests permission to open a connection with B.
Once the connection has been opened, both GEMS
synchronize their local entity databases – GEM A
receives a copy of GEM B’s shareable entities and
vice-versa. All subsequent collaborative interactions
occur whenever a shareable entity is created, deleted,
or changed. The state change is converted to an event
message and state change data propagated on an as-
needed basis. In our prototype scenario, we were
networking only a very small number of GEMS (2-3)
with very limited collaborative interaction (typically
only 1-2 entities were manipulated at a time, generating

at most 20 messages per second). Therefore, it was
convenient to use the same format for expressing state
changes as the static file format.

B. GEM-RE Communication

The GEM-RE communications subsystem provides the
mechanism for transferring entity data to and from the
RE. The state changes to the RE arise from the
interactions of all of the external systems. The state
changes from the RE consist of user initiated changes
such as relocating an entity. For the types of systems
we were dealing with, the greatest volume of data
would flow from GEM to the RE. Furthermore, we
could not afford to have either system sit and wait until
it could acquire data from its counterpart.

The communications subsystem consists of three main
parts: a GEM to RE event queue, a RE to GEM event
queue, and a shared data pool. The interface uses a
simple ownership toggling policy to coordinate
interaction. First, GEM is granted ownership of the
GEM-RE communications subsystem. Second, all of
the events from the RE are processed, causing changes
to occur in GEM’s stored entity database. Each entry
in the event queue specifies an entity and the type of
interaction, such as move or delete. The data for the
interaction is stored within the shared data pool. Third,
all of the different external system interfaces are
queried and all entity state changes since the last time
step are calculated. These state changes are used to
build the event queue to pass a list of instructions to
the RE. Fourth, state change information on shareable
objects is propagated out to the remote hosts. Finally,
GEM grants the RE ownership of the communications
system. The RE follows a similar pattern of operation,
updating the state of all entities specified in the event
queue. User invoked changes are placed into the RE to
GEM event queue and the RE switches ownership back
to GEM.

C. The Rendering Engine

The Rendering Engine (RE) is responsible for
implementing the user interface and it performs two
important roles – it manages the graphical display and
processes the user inputs. The requirements for the RE
are much more conventional than the GEM and, as
such, there are fewer novel developments. However,
the battlefield visualization application leads to two
important demands: it is reconfigurable (can be used
with multiple display devices) and should support
interactive frame rates (>10Hz stereo) when large and
complicated environments are being viewed.

1) Hardware Configurability
The Dragon system must operate with different suites
of interaction devices and display platforms. This
problem is not uncommon for the VR community and a
number of general-purpose graphics libraries have
been developed. One of the most extensive is the
CAVE Library which is a comprehensive set of
graphics system configuration tools, input device
drivers and simple networking capabilities [Pape-97].
However, its architecture is monolithic – all of its
capabilities are bundled into a single library and it was
not possible, for example, to extend, adapt or modify
the set of device drivers. Given these difficulties we
developed our own graphical library, the vrLib, which
builds directly on top of SGI’s IRIS Performer
libraries [Kuo-98].

The core of a vrLib-based program is an instance of a
vrApp object that maintains all system configurations
including the number and type of input devices as well
as the configurations of the display screens. The
abstract base class provides minimal functionality for
loading and parsing configuration files. Subclasses of
vrApp are responsible for interpreting the
configuration commands and performing the actual
graphics management. For example, the base class
supports a parameterization of the viewing surface in
terms of a user-specified number of windows with
basic properties (such as size, pipe number and
whether console input is enabled on a particular
window). The concrete subclasses of vrApp interpret
this information appropriately (for example, as the
walls of a CAVE or a Workbench with ancillary
displays).

2) Graphics Management
Roughly speaking, the dominant factor that influences
the frame rate is the complexity of the scene (in terms
of the number of triangles) that is being viewed by the
user at any given time. Surprisingly enough, for our
battlefield visualization applications the majority of the
burden arises from the entities and not from the terrain.
There are several reasons for this. First, the nature of
our applications means that we only deal with compact
and relatively “simple” environments at a single level
of detail. With conventional polygon reduction
algorithms, the terrain models typically use only about
10,000 triangles. In environments which are not
populated (no entities), extremely high frame rates
(>24Hz stereo) have been obtained without the need to
use any kind of specialized terrain visualization
techniques. Second, although the geometric description
of each entity is fairly simple (for example, the model
of an M1A1 tank has approximately 500 triangles),

their large number means that they account for a
significant proportion of the total polygon count.
Finally, significant delays can occur when large
numbers of models must be loaded in a short period of
time. For example, a typical scenario requires over 100
different types of models. When Dragon is switched to
a new scenario, it is possible that all of these models
must be loaded in “one go” which can take on the order
of ten seconds.

To address these difficulties, we used a geometry
library and an asynchronous model loading strategy.
The geometry library stores, in a parallel scene graph,
a copy of the geometry of each model that has been
loaded so far. When the RE receives a request to create
a new entity, it checks the geometry library to see if the
relevant model has already been loaded. If the model is
present, its geometry is cloned into the scenegraph. If
the geometry has not been loaded, a load request is
scheduled with the asynchronous model loader. This is
a separate process that loads the model and inserts it
into the geometry library. Empirical tests suggest that
these techniques approximately halved the initialization
time and doubled the frame rate.

IV. APPLICATION

A recent application of the Dragon was as a support
visualization system for the Joint Countermine
Operational Simulation component of the Joint Counter
Mine Advanced Technology Demonstrator (JCM). The
purpose of JCM was to measure the effectiveness of
novel techniques for mine clearance in combat
situations. Sets of simulated exercises were conducted
at North Carolina and the Dragon system, through its
DIS interface, was used as a viewer to aid in the
analysis of the archived data. This application is of
particular interest to the architecture because it is
extremely complicated and involves a large number of
independent entities (more than 220) of many different
types (over 100 different models were used). These
entities were in constant motion and events such as
explosions and smoke had to be depicted.

Throughout the exercise the system maintained a rate
of at least 10 frames per second, thus meeting all of its
requirements.

V. SUMMARY AND CONCLUSIONS

This paper has described the design of a software
architecture for a real-time battlefield visualization
system. Battlefield visualization has a number of
unique requirements that directly impact the design of
the architecture. For example, the need to interact with

multiple disparate data systems lead to the
development of the GEM and the RE.

Although this design has successfully met its
requirements, a number of shortcomings and areas for
future research work have become apparent:

1. Although the DIS classification scheme is
extremely powerful, standardized, and general for
describing military assets and entities, it is not
capable of describing all types of environmental
features that we might want to visualize, such as
weather effects. Therefore, the entity classification
system must be expanded.

2. The notion of an external interface is extremely
useful but limiting. Many types of higher order
object behavior, such as dynamic systems or
windows systems, will own objects with their own
types and behaviors. Therefore, the external
interface will be generalized to an “actor” – any
kind of object that can own and manipulate
entities.

3. The system architecture will be enhanced to
provide greater scalability and extensibility. The
concept of independent modules will be pursued
aggressively. Using the framework from Bamboo
[Watsen-98], Dragon will be decomposed into a
large number of interacting modules that can be
dynamically loaded and unloaded at run-time. This
will give a highly reconfigurable system that can,
for example, load and unload external interfaces on
demand.

VI. ACKNOWLEDGEMENTS

This research was supported by the Office of Naval
Research, Arlington, Virginia.

VII. REFERENCES

[Cebrowski-98] Vice Admiral A. K. Cebrowski and J. J.
Garstka, “Network-Centric Warfare: Its Origin and
Future” , Naval Institute Proceedings, January 1998.

[Churchill-98], E. F. Churchill and D. Snowdon,
“Collaborative Virtual Environments: An Introductory
Review of Issues and Systems” , Virtual Reality, Vol 3.1, pp
3–15, 1998.

[Courtmanche-95] A. J. Courtmanche, A. Ceranowicz,
“ModSAF Development Status” , Proceedings of the Fifth
Conference on Computer Generated Forces and
Behavioral Representation, Univ. of Central Florida, pp 3-
13, Orlando, Fl., 1995.

[DMSO-97] Defense Modeling and Simulation Office,
“HLA Interface Specification” , Version 1.1, 12 February,
1997.

 [Hagsand-96] O. Hagsand, “ Interactive Multi-user VEs in
the DIVE System” , IEEE Multimedia, Vol 3.1, pp 30–39,
November, 1996.

[Hix-99] D. Hix, J. E. Swan II, J. L. Gabard, M. McGee, J.
Durbin and T. King, “User-Centered Design and
Evaluation of a Real-Time Battlefield Visualization Virtual
Environment” , To be presented at the IEEE Virtual Reality
'99 Conference, Houston, TX.

[Kuo-99] E. Kuo, M. Lanzagorta, R. Rosenberg and S.
Julier “A Report on VR Scientific To be presented a the
IEEE Virtual Reality '99 Conference, Houston, TX.

[Leigh-97] J. Leigh, A. E. Johnson, T. A. DeFanti,
“CAVERN: A Distributed Architecture for Supporting
Scalable Persistence and Interoperability in Collaborative
Virtual Environments” Journal of Virtual Reality
Research, Development and Applications, Vol 2.2, pp.
217–237, December, 1997.

[Padzic-97] I.Pandzic, T.Capin, E.Lee, N.Magnenat
Thalmann and D.Thalmann, “A Flexible Architecture for
Virtual Humans in Networked Collaborative Virtual
Environments” , Proc. Eurographics '97, pp.177-188,
1997.

[Pape-97] D. Pape, C. Cruz-Neira and M. Czernuszenko,
“The CAVE Library version 2.6 User's Guide” ,
http://evlweb.eecs.uic.edu/pape/CAVE/prog/CAVEGuide.html

[Rosenblum et al., 1995] Rosenblum, L., S. Bryson, and S.
Feiner, "Virtual reality unbound," IEEE CG&A, Vol. 15,
No. 5, Sept. 1995, pp. 19-21.

[Rosenblum et al., 1996] Rosenblum, L. J., J. Durbin, L.
Sibert, D. Tate, J. Templeman, U. Obeysekare, J.
Agrawaal, D. Fasulo, T. Myers, G. Newton, A. Shalev,
“Shipboard VR: from damage control to design” , IEEE
Computer Graphics and Applications, Vol. 15, No. 6, Nov.
1996.

[Rosenblum et al., 1997] Rosenblum, L.J., J. Durbin, R.
Doyle, and D. Tate, “Situational Awareness Using the VR
Responsive Workbench,” IEEE Computer Graphics and
Applications, Vol. 16, No. 4, July, 1997.

[Wang-95] Q. Wang, M. Green and C. Shaw, “EM – An
Environment Manager for Building Networked Virtual
Environments” , IEEE Virtual Reality Annual International
Symposium, Research Triangle Park, NC, pp 11-18, March
1995.

[Waters-97] R. C. Waters and J. W. Barrus, “The Rise of
Shared Virtual Environments” , IEEE Spectrum, March,
1997

[Watsen-98] K. Watsen and M. Zyda, “Bamboo - A
Portable System for Dynamically Extensible, Real-time,
Networked, Virtual Environments” , IEEE Virtual Reality
Annual International Symposium (VRAIS'98), Atlanta,
Georgia, 1998.

